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Deformed Whitham equations for some near-integrable systems

Alexander A. Zabolotskii*
Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Rus
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A perturbation approach for some near-integrable systems with periodic boundary conditions is developed.
Deformed Whitham equations including perturbaton terms of a special type are derived in a common form for
Ablowitz-Kaup-Newell-Segur models. This approach is used for analysis of the generation of a dense packet of
solitons in a model of a two-level laser with pumping of the upper level and relaxation.
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I. INTRODUCTION

The description of soliton generation in nonlinear me
is an interesting and important problem in theoretical phys
@1–3#. The generation of ultrashort pulses in the amplifyi
systems has also attracted researchers’ attention. The dy
ics of laser pulses isolated from each other has been stu
in many publications. Frequently, however, the initial sta
of generation involves a high density of solitons or anot
type of nonlinear pulse. This situation may arise, for
stance, in a powerful laser with small losses@4#. The behav-
ior and characteristics of solitons depend on mutual inte
tion of solitons in a dense packet. Knowledge of su
characteristics is important in the application of genera
pulses in nonlinear optics and also for improving the eff
tiveness of laser systems. To gain information on out
pulse characteristics, one has to establish an onset of p
and regimes of generation.

The most detailed information about evolution of fields
nonlinear models may be obtained by using the inverse s
tering transform~IST! @5#. The dynamics of solitons in iso
lation in the attenuators are now well understood mainly o
ing to application of the IST to the solution of nonline
models. The characteristics of generated pulses was stu
in the framework of the IST by Manakov and co-workers f
a long two-laser amplifier@6#. As considered in the Ref.@6#
models, asymptotics of laser fields are described usin
similar solution. Analogous asymptotics may be realized i
mathematically related model of stimulated Raman scat
ing @7#.

More often than not, another scheme of amplification
used in lasers; for details, see@1,4#. An idealized powerful
laser with small losses may be simulated using the Maxw
Bloch equations for a two-level system with pumping of
upper level. This and related models have been studie
many publications. However, a detailed description of
dynamics of a dense packet of generated solitonlike
trashort pulses is, to our knowledge, absent in the literat

To treat a nonlinear stage of evolution of the dense pa
ets of pulses, one must operate with a large number of
grees of freedom. Such treatment is possible, as a rule,
in completely integrable models, and even for the comple
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integrable systems it leads to tremendous analytical pr
lems. On the other hand, some experimental results of
generation of dense packets of pulses may be described u
modulated periodic waves. Furthermore, experimental
numerical studies of soliton generation in lasers with sm
losses show that an initial stage of generation may be si
lated using one-~two-! phase waves with modulated shap
@4#. It worth mentioning that similar situations arise in stud
ing the evolution of steplike fields in attenuators@5#. This
observation motivates one to use a heuristic Whitham
proach to study the behavior of dense packets of pulses.
approach consists of two steps. The first step is a deriva
of an exact one-~two-! phase solution to the original equa
tions with periodic boundary conditions. Then it is assum
that spectral data associated with periodic wave can dep
on space and time variables. This dependence is slower
that of a single oscillation consisting of a single packet. A
eraging over fast nonlinear oscillations yields evoluti
equations for parameters of the periodic wave. These eq
tions are the hydrodynamic Whitham equations@8,5#, which
can be effectively obtained using the IST@12#.

Perturbation theory can be developed for systems w
periodic boundary conditions as well. It leads, usually, to
cumbersome theory. In the present paper we develop ef
tive perturbation theory for slowly modulating dense pack
of pulses. A peculiarity of this theory is the possibility o
incorporating the perturbations by means of prolongation
derivatives of a particular type. The ultimate goal of th
paper is the development of a perturbation approach an
application to the description of slowly modulating period
solutions to the near-integrable system. This approach
based on the IST technique, which allows one to rece
modified Whitham equations for slowly changing paramet
of periodic waves with terms describing perturbations
rectly in diagonal form.

In Sec. II an approach is developed for a common ne
integrable Ablowitz-Kaup-Newell-Segur~AKNS! system.
Results obtained by Burtsev, Mikhailov, and Zakharov@9#
for exactly integrable models with changing spectral para
eters are used. Deformed Whitham equations are derive
Sec. III by means of the extended method of Flaschka, F
est, and McLaughlin@12#. Conventional Whitham equation
are modified to include perturbations terms.

The approach developed here is used for the study
soliton train generation in a model two-level laser. Th
4813 © 1997 The American Physical Society
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model may be used to describe an initial stage of ultras
pulse generation in gas, dye, and solid state lasers@4#. It is
known that some kind of pumping and relaxation can
included in the IST without the IST losing integrability. Ge
eralization of models may be done if it is assumed that
spectral parameter depends on variables@9,10#. A corre-
sponding modification of the IST can be effectively used
study isolated pulse dynamics. It is known, however, t
both relaxation effects and pumping can be included in
above laser model without loss of applicability of the IS
only if artificial unphysical conditions are fulfilled; for de
tails, see@10#. These conditions are avoided and addition
perturbation terms can be treated in the approach prese
here. Section IV is devoted to studying the generation
dense packets of pulses. Exactly integrable two-level la
models with perturbations describing relaxation and pum
ing effects are investigated. Two different solutions to mo
fied Whitham equations are derived and investigated. Th
solutions demonstrate transformation of an initial const
field having small amplitude in a sequence of solitons. T
influence of pumping and relaxation on the characteristic
generated solitons is found and compared with experime
data.

II. THEORY OF DEFORMED NEAR-INTEGRABLE
MODELS

In this section, we extend the IST with variable spect
parameters to near-integrable equations. Nonisospectral
lution equations arise as a compatibility condition of the f
lowing linear systems:

Fj5UF,
~2.1!

Fh5VF.

Here U, V, and F are the matrixN3N complex-valued
functions ofj, h, and the spectral parameterl. In general,U
andV depend onl rationally,

U~l,j,h!5u01 (
n51

N1 un~j,h!

l2ln
,

~2.2!

V~l,j,h!5v01 (
n51

N2 vn~j,h!

l2mn
,

where simple polesln andmm do not coincide. In the con
ventional IST,l, ln , mn are assumed to be constants. L
polesln ,mn be functions ofj,h and depend on hidden pa
rameterz. The compatibility condition

Uh2Vj1@U,V#50 ~2.3!

must be fulfilled precisely overz and the related system o
nonlinear equations for the matricesun ,vn possess exactly
gauge indeterminacy. In exact theories this fact imposes
strictions onl, which can be found in explicit form. Con
sider the following generalization of compatibility conditio

DhU2DjV1@U,V#50, ~2.4!
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where Dh5(]/]h)1F(l,h,j)(]/]l), Dj5(]/]j)
1G(l,h,j)(]/]l). The condition of compatibility~2.4! re-
quires that the following relation be held for the exactly i
tegrable models

Fh1GFl5Gj1FGl . ~2.5!

Relation ~2.5! was derived by Burtsev, Mikhailov, and Za
kharov @9# for the exactly integrable models. Restriction
corresponding to theh,j dependence onl is found in Ref.
@9#. We aim to construct the perturbation theory using
extension of the above results to near-integrable systems
consider perturbations that satisfy condition~2.4! in the first
approximation. Let us show that this condition can be a
proximately fulfilled for some class of near integrable sy
tems. Consider the following form of functionsF andG:

F5« f ~«h,«j,l!, G5«g~«h,«j,l!, ~2.6!

where« is a small parameter. This means that both functio
F andG are small and slow functions of variablesh andj.
Dependence of these functions on spectral parameterl may
be arbitrary. Additionally,l may be a slow function ofh
and j. Direct substitution of Eq.~2.6! into ~2.5! shows that
condition ~2.5! is fulfilled for arbitrary f and g if one ne-
glects the terms of order«2. Thus, under this approximatio
one can include in evolution equations terms describing p
turbations having order«. Compatibility condition~2.4! is
satisfied up to terms having order«2.

Instead of the above prolongation of partial derivative
one can use a variable-dependent spectral parametel,
which has to obey to the following pair of equations:

]hl52F~l!,
~2.7!

]jl52G~l!.

For slowly changingl5l(«h,«j) relations~2.5! are ful-
filled for any lm ,cm ,bm if one neglects terms of order«2.

Let the functionsF andG have the following forms:

F52« (
m51

N1 cm

l2lm
, G52« (

m51

N2 bm

l2lm
. ~2.8!

Then the general perturbed equations have the follow
form:

]hu02]jv01@u0 ,v0#50.

]un

]h
1Fun ,(

k51

N2
vk

ln2mk
G5« (

m51

N2 bmun1cnvm

~ln2mm!2
, ~2.9!

]vn

]j
1Fvn ,(

k51

N1 uk

mn2lk
G5« (

m51

N1 cmvn1bnum

~lm2mn!2
.

It is known that for the exact model, conditions~2.8! impose
rigorous restrictions on the trajectory ofl @9#. The perturba-
tion approach based on the above formulas allows one
avoid such restrictions. At the same time, the form of pert
bations terms used above allows one to take advantage o
IST.
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Applicability of the perturbation theory is restricted
special perturbation forms. These perturbations have to
slow functions of variablesh andj. Perturbation terms may
include the effects of relaxation or loss for fields and mate
equations, different forms of pumping, variation of med
parameters, and so on. These perturbations result in a
change in parameter solutions. For instance, for the nonlin
Schrödinger equations, such perturbation terms may desc
slow time and space modulation of medium density. Us
the example of the two-level laser model, it will be shown
Sec. IV that these perturbations may be of actual phys
interest.

III. DEFORMED WHITHAM EQUATIONS

In this section, the above perturbation approach will
used to construct the perturbation theory for the perio
solutions to the evolution systems. Generalization or ‘‘def
mation’’ of the Whitham equations can be derived
straightforward application of the IST with prolonged deriv
tives. ~The term ‘‘deformation’’ is borrowed from the pape
of Burtsev, Mikhailov, and Zakharov@9#!. The Whitham
equations for AKNS systems can be directly derived in
framework of the IST in diagonal form. It will be show
below that in the framework of the approach presented h
the deformed Whitham equations have a diagonal form
well.

Smoothed shock waves or any modulated wave train m
be described in a quasiclassical~or hydrodynamic! approxi-
mation. In this approximation, it is assumed that the len
and duration of a train or region of oscillations is much mo
than that of each soliton or nonlinear pulsation filling t
region of oscillations. It is suggested that the characteri
parameters of the periodic solution are slow functions
variablesj,h. These parameters are the roots of polynom
P ~see below!. Their scales of change are much greater th
that of the single pulse. These slowly changing parame
obey equations that may be found by averaging some i
grals over the period of fast pulsationsT. In this way, analy-
sis of a complex system with many degrees of freedom
reduced to the solution of a few evolution equations.

We derive deformed Whitham equations using an ext
sion of the approach of Flaschka, Forest, and McLaug
@12# to the near-integrable models under consideration.
mentioned above, an exact method of solving the evolu
equations under periodic boundary conditions is very eff
tive for deriving the modulation Whitham equations. Let t
AKNS system have the following Lax representation:

DjF5L̂F5S L11 L12

L21 2L11
DF, ~3.1!

DhF5ÂF5S A11 A12

A21 2A11
DF. ~3.2!

where Â and L̂ are the functions of fields and spectral p
rameterl. F is a matrix-valued function. Following the ap
proach developed in Refs.@13#, we introduce the quadrati
eigenfunctions

f 5~ i /2!~f1c21f2c1!, g5f1c1 , h5f2c2 , ~3.3!
be
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where f1,2 and c1,2 are the different solutions of system
~3.1!, ~3.2!. These functions satisfy the system

Dh f 5 i ~A12h2A21g!, Dj f 5 i ~L12h2L21g!,

Dhg52iA12f 12A11g, Djg52iL 12f 12L11g, ~3.4!

Dhh522iA21f 22A11h, Djh522iL 21f 22L11h.

It can be easily checked from system~3.4! that value
P(l)5 f 22gh satisfies the conditions DjP(l)50,
DhP(l)50.

The shape of the periodic solution is determined by
dependence ofP on spectral parameterl. For instance, the
N-phase solution is determined by the following polynom
dependence:

f 22gh5P~l!5 )
k51

2N12

~l2lk!5 (
j 50

2N12

Pjl
j . ~3.5!

Here,lk are the roots of polynomialP(l) fixed by the initial
conditions. The meaning of the coefficientsPk depends on a
particular form of the Lax pair. It can be shown that qu
dratic functions, satisfying the system~3.1!, ~3.2!, have for
the N-phase case the following forms:

f 5 (
k5o

N11

f kl
2k, g5 l ~l! (

k51

N11

gkl
k, h5p~l! (

k51

N11

hkl
k,

~3.6!

wherel (l),p(l) are some functions of spectral parameterl
determined by the Lax representation.l (l) @p(l)# is a com-
mon multiplier ofL12 andA12 ~L21 andA21!; l (l) andp(l)
are usually related by symmetry conditions. Following t
Marchenko approach@13,15# assume that

g5 l ~l! )
k51

N11

@l2mk~j,h!#, ~3.7!

wheremk are the auxiliary spectrum points. Substituting e
pression~3.7! in equations~3.4! and settingl5mk we get a
set of equations formk ,

Djmk5
2iL 12~mk!AP~mk!

)
j Þk

j Þk~mk2m j !l ~mk!

, ~3.8!

Dhmk5
2iA12~mk!AP~mk!

)
j Þk

~mk2m j !l ~mk!

. ~3.9!

The approach consisting of derivation of a set of conser
tion laws in the AKNS scheme is based on the followi
identity:

DhS L12

g D5DjS A12

g D , ~3.10!

which is a direct extension of the corresponding identity d
rived in Refs. @12,15# to a case of prolonged derivative
Following Forest and McLaughlin@15#, we introduce a new
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4816 56ALEXANDER A. ZABOLOTSKII
normalizationf 22gh51. Then the above identity~3.10! can
be rewritten in the following form:

Dh

L12~l!AP~l!

)
k51

N11

~l2mk!l ~l!

5Dj

A12~l!AP~l!

)
k51

N11

~l2mk!l ~l!

. ~3.11!

Averaging the above equations over the period of osci
tions yields the Whitham equations for slowly changi
spectral parameterslk . Using relations~3.8!,~3.9!, averaging
over fast variablesj,h can be replaced by integration onmk
@12#. The angle brackets denote this averaging. The van
ing of singularities in the limitsl→lk , wherelk are the
branch points ofAP(l), directly yields the Whitham equa
tions in a diagonal form:

]lk

]h
1Vk

]lk

]j
1F~lk!1VkG~lk!50, ~3.12!

where

Vk5K 2iL 12~mk!

)
j Þk

~mk2m j !l ~mk!L K 2iA12~mk!

)
j Þk

~mk2m j !l ~mk!L 21

.

~3.13!

Averaging may be done using equations~3.8!,~3.9!. Integra-
tion on phaseWj5kjj1vkh1w0, wherew0, kj , andvk are
constants, can be changed by integration on auxiliary v
ablesm j . Equations~3.8!,~3.9! have, on the left-hand sides
derivatives ofl5mk . Here we aim to apply these equatio
to derivation of the Whitham equation in the first appro
mation in degrees of«, i.e., the terms of orderO(«2) must
be neglected. This approximation is self-consistent if it
assumed that lk are slow functions of variable
lk5lk(«h,«j). The latter assumption means that the d
rivatives of l j of variablesj,h have the same order as th
perturbation terms associated with termsF(l),G(l). Under
this assumption, the terms in Eqs.~3.8!,~3.9! containing
small functionsF(l),G(l) yield contributions of order« to
velocitiesVk and they have to be neglected in the first a
proximation in the final deformed Whitham equations.

IV. TWO-LEVEL LASER WITH CONTINUOUS PUMPING

Consider a physical application of the above gene
theory. It is known that in long-laser amplifiers small initi
seed fields evolve into a set of pulses described by a sim
ity solution @6#. Generally, the structure of the solution
determined by the initial and boundary conditions, pertur
tions, the form of pumping, and so on. It is important in las
constructions to know the change of pulse velocity w
time, the dependence of the pulse shape on the paramete
the seed field, and so on. For lasers with external continu
pumping and small losses, a detailed investigation of
nature of the generated pulses with respect to evolu
model may be performed using the above approach. In
section we will investigate two regimes of generation of t
soliton trains. The first regime is a nonstationary transform
tion of long steplike pulses to a consequence of slowly a
plifying asymptotic solitons. The second regime consists
-
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transforming a plane wave having initially small amplitud
into a set of solitons. The parameters of these solitons ten
be stationary values corresponding to a solitonic attrac
We shall show that the onset of generated pulses may d
from that of long-laser amplifiers considered in@6#. Com-
parison of qualitative theoretical results with known expe
mental results seems to be satisfactory.

Let us consider a two-level model with pumping of a
upper level. Maxwell-Bloch equations describing reson
interaction of light pulses with atomic transition are as fo
lows:

]tQ1g2Q12inQ52
id12

\
EN, ~4.1!

]tN31g1~N32N0!5
id12

2\
~Q* E2QE* !1C0 , ~4.2!

]zE5 iN0

2pv0

cl
^Q&G , ~4.3!

whered12 is the dipole momentum of transition,N3 is the
difference between level populations,Q is an off-diagonal
part of the density matrix,N0 is the density of resonant at
oms,g1,2 are the relaxation constants,t is the retarded time,
v0 is the frequency of transition,cl is the light velocity, and
n is the detuning frequency. Angle brackets denote averag
of polarization for inhomogeneously broadened atom
^Q&G5*2`

` Q(n)G(n)dn over the detuning distribution
G(n). We consider the case in which the time scale of a
plitudes of fields is less theng1,2

21 . For a large family of
lasers, pumping may be modeled by including a real funct
C0(x). Here t5tAV, x5zAV/cl , V52pN0v0d12/\, and
c8(x)5C0(x)/AV.

Let us apply the procedure described in the preced
sections to a case of one-phase solution to Maxwell-Blo
equations. The Lax representation of the model has the
known form ~3.1!,~3.2!, where

L1152 il, L125
E

2
, L215

E*

2
,

A115
i

4K N3

l2n L
G

, A1252
i

4K Q

l2n L
G

, ~4.4!

A2152
i

4K Q*

l2n L
G

.

Consider the case ofF(l)5«@c(«x)/l#, G(l)5«gl. Here
c85«c,g15g25«g. Slow dependence of functionc on
variablex may be arbitrary. FunctionF(l) describes pump-
ing and functionG(l) is related to relaxation effects. W
restrict ourselves to the case of equal relaxation const
g15g2. This restriction can be fulfilled in a gas of met
atoms. It is known that each of these terms can be imp
mented in the IST with variables depending on spectral
rameter@10#. Relaxation and pumping terms can be unifi
only if very artificial conditions are imposed on functionsg
andc. These conditions are not fulfilled in real laser expe
ments. Using the approximate approach developed here
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can avoid these restrictions. We are able to investigat
region of parameters that cannot be reached by reductio
the exact nonisospectral IST. Conditions of small pump a
relaxation terms can achieved in a modern experime
setup. As will be shown, there are regimes that influe
both pumping and relaxation and lead to qualitatively n
behavior of generated pulses. Note that the above pertu
tion approach can be used, in general, for any slow dep
dence of functionsc(«x,«t),g(«x,«t).

We use for modeling of the initial stage of laser pul
generation the simplest one-phase solution to the Maxw
Bloch equation. The exact commonN-phase solution to the
Maxwell-Bloch equations can be found in terms
u-functions following@13# for c5g50. The common solu-
tion has the following form:

E~x,t !5E~0,0!l ik0x2 iq0t
u~W2,§!

u~W1,§!
, ~4.5!

where W65(1/2p)(kjx1V j t1d j
6),kj ,V j ,d j

6 are con-
stants, and§ is a matrix of periods; see, for instance,@14#.
The structure of the solution is the same as for the nonlin
Schrödinger equations@13,14# up to its dependenceV j on
the roots of polynomialP. A one-phase solution to the non
linear Schro¨dinger equation can be used for our purpos
after changing of the coefficientV1. We shall use this exac
one-phase solution as a zero approximation. Perturba
terms yield modulation of a train of the nonlinear pulsatio
This modulation is assumed to be of the same order as
dispersion effects described in the hydrodynamic approxi
tion by nonperturbed Whitham equations.

For two pairs of complex conjugated roots of the polyn
mial P, l1,35a6 ib,l2,45a06 ib0, we have from Eq.~4.5!
the following expression for the intensity of the electric fie

uE~x,t !u25uE~0,0!u2@~b1b0!224bb0sn2$@~b1b0!2

1~a2a0!2#1/2W,k%#, ~4.6!

where k is a modulus of the Jacobi function an
k25(4bb0)/@(b1b0)21(a2a0)2#. Phase W is found
from Eqs. ~3.8!,~3.9!. For the one-phase solution it can b
done easily:

W52~ t1xV0
211t0!, V052E

2`

` G~n!

4)
i 51

4

~l i2n!

dn.

~4.7!

For the one-phase solution we have to setN52,l (l)[1 in
formulas~3.4!,~3.6!. Then we have

DxS E

2gD5DtS A12

g D , ~4.8!

whereDx5]x1F]l ,Dt5] t1G]l . After a new normaliza-
tion for functions f ,g,h such that f 22hg51, the above
equation transforms into the following:

DxFP~l!1/2

l2m G5DtFP~l!1/2

V0
S 1

l2m
2 K 1

l2n L D G . ~4.9!
a
of
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al
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The angle brackets in the above relation denote averagin
fast oscillations over the periodT. As noted above, averagin
can be done by changing of integration on phaseW to inte-
gration on the auxiliary variablem. To accomplish this, re-
write formulas~3.8!,~3.9! in a common equation

]m

]W
52 iAP~m!1

«

2S c

m
1gm D . ~4.10!

The period of oscillationsT is determined by the following
integral:

T5E dW5E dm

«c

2m
1

«gm

2
1AP~2m!

, ~4.11!

Relation ~4.11! can be easily obtained from~4.10!. If we
neglect the perturbation terms (c5g50) we obtain
T52K(k)@(l12l3)(l22l4)#21/2, where K(k) is a com-
plete elliptic integral of the first kind with modulusk:
k25@(l12l2)(l32l4)#/@(l12l3)(l22l4)#, lk are the
roots of polynomialP such thatl1.l2.l3.l4 @16#. Inte-
gration is performed along the curve whose circle cuts
tweenl1 andl2 or l3 andl4. Averaging over the period o
fast oscillationsT is performed by using the following rela
tions:

K 1

l2m L 5
1

TE 1

l2m
du

5
1

TE 1

l2m

dm

«c

2m
1

«gm

2
1AP~2m!

.

~4.12!

In perturbation theory, we neglect terms of order«2;
therefore, terms in Eq.~4.12! of order « can be avoided
because they give a correction of order«2 in the final form of
the deformed Whitham equations. Thus the ter
(«c/m),«gm in the above relation have to be avoided.

Setting successivelyl5ln ,n5124, we obtain from
Eqs.~4.11! and ~4.12!

lim
l→ln

K 1

l2m L 522]ln
~ lnT!. ~4.13!

The limits l→ln yield the singularities in the differentials

DtAP~l!, DxAP~l!.

The vanishing of the corresponding coefficients in~4.6! are
fulfilled if the spectral parameters obey the following gen
alization of the Whitham equations:

]xln2
1

Vn
] tln5«S g

Vn
ln1

c

ln
D , ~4.14!

where

1

Vn
5

1

V0
F12S lnK 1

ln2m L D 21G , ~4.15!
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K 1

l12m L 5
~l22l3!E~k!1~l12l2!K~k!

~l12l2!~l12l3!K~k!
,

K 1

l22m L 5
~l12l2!K~k!2~l12l4!E~k!

~l12l2!~l32l4!K~k!
,

K 1

l32m L 5
~l22l4!E~k!2~l22l3!K~k!

~l22l3!~l32l4!K~k!
,

K 1

l42m L 5
~l12l3!E~k!2~l12l4!K~k!

~l12l4!~l32l4!K~k!
,

whereV0 is written in Eq.~4.7!. For G(n)5d(n) we have
V051/4AP0, whereAP051(l1l2l3l4)1/2. The sign1 has
been chosen to make the phase velocity of the pulses
then that of light.E(k) is a complete elliptic integral of the
second kind with the same modulus as the abovek. From the
above derivation, it is obvious that the modified Whitha
equations for different AKNS systems have the same v
up to its dependence on a phase velocityV0.

Evolution equations~4.14! in partial derivatives possese
different kinds of solutions. Let us find a nonstationary so
tion to the Whitham equations~4.14!. Suppose thatg de-
pends only ont andc depends onx. Now perform the fol-
lowing substitution:

lk5l 2*g8dtAzk~x,t !12E c8~x!dx, ~4.16!

where g85«g. The terms on the right-hand side of E
~4.14! containingg andc disappear and Eqs.~4.14! reduce
to nondeformed Whitham equations for hidden parame
zk(x,t). We shall use the substitution~4.16! to analyze split-
ting of the initial seed field having the form of a steplik
pulse into a set of amplifying pulses. The Whitham equatio
are divided into the two pairs of complex-conjugate eq
tions. Two roots are initially fixed by linking with plane
wave asymptotics at2` or 1`; two others roots can be
linked with parameters of the highest soliton of the packe
pulses arising near the leading or back edge, respectiv
ss

w

-

r

s
-

f
ly.

We assume that there are initial conditions leading to
generation of solitons at one of the edges of the step
pulse without amplification. The most interesting regime
application to laser optics is that a leading edge is associ
with the highest soliton. For the Maxwell-Bloch model, su
a situation can be realized for some region of parameter
the initial steplike pulse if the system was initially part
inverted. Another method consists in using a seed field h
ing the form of a periodic wave of a special type. Detail
investigation of this problem is not the aim of this paper. W
only mention that such regime, the generation of higher s
tons, has been observed in many studies. Under some co
tions, the formation of solitons near the back edge may be
potential experimental interest as well. Consider a situat
in which nonlinear pulses are generated near the back e
of the steplike pulse and tend asymptotically to a set of s
tons. It is natural to suppose that the stage intermediate
tween the plane-wave regime and the solitonic one can
described by a one-phase solution with slowly changing
rameters. Such arguments may justify the application of
heuristic Whitham approach to describing the developm
of modulation instability in attenuators. This approach h
been very effectively used for investigation of the transf
mation of steplike pulses into a set of solitons for t
Korteveg–de Vries equation@5#. For the model under con
sideration, we have made numerous studies and found
under the above-mentioned conditions this approach yie
satisfactory results.

The solution to the Whitham equations~4.14! can be
found only in an implicit form. Let two rootsz1 and z3 be
fixed. Consider the most interesting case, in wh
z15a01 ib0 ,z35a02 ib0 ,a0 ,b0Þ0. The dynamics of the
two ‘‘moving’’ roots z2 andz4 will obey the hydrodynamics
approximation to the Whitham equations~4.14!. The solution
to Eqs.~4.14! fixes the trajectories of roots in the comple
plane. Analysis of these trajectories allows one to desc
the transformation of weak quasilinear modulation of t
plane wave to a set of quasi-isolated solitons. L
z25a1 ib,z45a2 ib. The second Whitham Eq.~4.14! ~for
z2) is the following:
t

x
5

1

AP0
H 12

1

a1 ib

2ib@a02a1 i ~b02b!#K~k!

@a02a1 i ~b02b!#K~k!2@a02a1 i ~b01b!#E~k!J . ~4.17!

For the real and imaginary parts of Eq.~4.17! we have

R~k!5
E~k!

K~k!
5

a~a0
21a21b0

21b2!22a~a0a1b0b!

a~a0
21a21b0

21b2!22a0~a21b2!
, ~4.18!

S t

x
AP021D ~a21b2!~a02a!2@12R~k!#1@b02b1~b01b!R~k!#254b~a02a!~a0b2ab0!@12R~k!#

1@b02b1~b01b!R~k!#~bb02b21aa02a2!. ~4.19!

Equations~4.18!,~4.19! can be solved fora andb as functions ofR(k) and the modulusk,
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k25
4bb0

~a02a!21~b01b!2
. ~4.20!

Calculations yield

a5
a0

a0
2k1b0

2M2
„a0

2k21~22k!b0
2M1b0$2a0

2k2~22k!M1M2@4b0
2~12k!2a0

2k2#2a0
2k2%1/2

…, ~4.21!
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b5
b0aM

a0k
, ~4.22!

whereM (k)5@(22k)22(12k)R(k)#.
Equations~4.21!, ~4.22! show that trajectories of roots ar

strictly determined. This is a consequence of the fact that
system remains Hamiltonian in spite of the fact that spec
data change with changes of variables. Note that spe
data dependence described by the Whitham equations
stroys the exact integrability.

Trajectories of the rootsz2→z1, z4→z3 as functions of
x/t consist of two symmetric monotonic curves with resp
to real axis. The curve lying in an upper half plane sta
from the real axis and monotonically tends to a ‘‘top’’ valu
z1 of the imaginary part of the spectrum. The case of c
lescing rootsz25z4 corresponds to the plane-wave lim
from which we started. The solitonic limit is achieved, th
k→1. It may be shown using Eqs.~4.21!,~4.22! that root
z2→z1 and z4→z3 with increasingt/x. Near the highest
soliton containing the back edge of the packet, neglecting
terms of order of (12k), we obtain

z25z1F11
2 Imz1~12k!1/2

uz1u G . ~4.23!

FIG. 1. Transformation of the back edge of an initially stepli
seed pulse in a sequence of solitons due to modulation instab
without amplification and lossesc5g50. Dependence on the in
tensity I (x)5uE(x)u2 of generated field is found by numerical s
lution to the Whitham equations for hidden parameterz1,3 and
shown in arbitrary units.
e
al
ral
e-

t
s

-

e

From Eq.~4.15! it follows that in both limits the phase ve
locity of wavesVn coincide withV0, although they have, o
course, different values of these limits. Thus, the impli
solution ~4.21!,~4.22! describes the moving of hidden spe
tral parametersz2,4 from the values associated with th
plane-wave solution to those of the asymptotic soliton.

Thus, the change of parametersl1,3 describes in the soli-
tonic limit slowly increasing amplitude of generated solito
through relation~4.16!. The regime of laser pulse generatio
consists of two concurrent processes. The first is a forma
of solitons near the edge of a steplike pulse and the secon
simultaneous amplification of these pulses. Consider the
tial conditions associated with soliton formation taking pla
in attenuators as well. In Fig. 1, transformation of the ba
edge described by the above solution for hidden parame
is shown. Amplification can cause a significant change in
form of train generated~see Fig. 2!, where splitting of step-
like pulses with amplification is shown. Note that the regim
considered is essentially nonstationary and does not re
stationary asymptotics.

For application to laser systems, the regime of grea
practical utility is that in which the most powerful soliton
are generated near the leading edge of the train. Nume
show that the transformation of the steplike pulse into a tr
of solitons near the leading edge may occur in an attenu
for an initial seed field having special periodic modulation
was found that such a regime may also occur for some
gions of initial values of field amplitude, detuning, and initi
nonzero polarizationQ(x,0), i.e., for partly inverted systems
These regimes require special experimental efforts and th

ity

FIG. 2. Transform of the back edge of a steplike pulse
c850.05,g850.05. Dependence on the intensityI (x) is shown in
arbitrary units.
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4820 56ALEXANDER A. ZABOLOTSKII
fore the region of application of the results is restricte
However, the above-described transformation of the step
pulse in a train of soliton can be realized for the back edge
pulse as well; see Fig. 2.

The relative contribution of the above mechanism of so
ton generation in laser output requires additional investi
tion. Indeed, the specific property of the Maxwell-Bloc
equations is that in a regime of amplification the contribut
of the continuous spectrum in an output field may be do
nant ~cf. @10,7#!. The usual experimental setup contains
ters removing ‘‘parasite’’ spikes appearing after the m
pulse; see@4#. In such a system, solitons generated from
steplike seed field can be observed experimentally if
group velocity of the soliton packet differs significantly fro
that of pulses associated with a continuous spectrum
losses are sufficiently small. To compare relative contri
tions of the solitonic and nonsolitonic parts in a laser outp
let us consider the simplest isolated soliton solution. T
one-soliton solution describing the edge of packet is de
mined by the highest point of the imaginary part of the sp
trum and is associated with the initial steplike pulse. Let t
point bez15a01 ib0; here,a0 ,b0 are real constants. Th
solution for the amplifying soliton in the above approxim
tion can easily be found by several known methods using
Lax representation for the Maxwell-Bloch model. For i
stance, the Darboux transform yields, for zero asympt
x→6`, a solution for fieldE as a combination of function
C1,25l 6f, E54b0C1C2 /uC1u21uC2u2, where
f5 i *l1dx1 i *(dt/4l1)1b, b is a constant.

This solution is as follows:

E~x,t !54b0

l 2 i2 Imf1 ia0

cosh~2 Ref1a1!
,

~4.24!

f5
A2c8x1z1~12l 2g8t!

g8
2

A2c8x1z12Az1

4c8
.

For solution~4.24! we havex2cl t5c12 c2t21/21o(t21/2).
Herecl is the light velocity,a0,2 andc1,2 are the constants
c15(cl /g8)@11(g8/4cl)#, c25Acl /A8@11g8/(4cl)#. It is
known that a similar solution associated with the continuo
spectrum for the above Maxwell-Bloch model~without re-
laxation! possesses a leading front described approxima
by the Bessell functions and depending on a similar varia
s5A(cl t2x)(2x) @11#. For a fixed points0 on the leading
edge of a moving pulse, one finds thatx2cl t52
s0t211o(t21). Herec1 is a constant. Thus, solitons near t
leading edge may be observed for powerful seed pulses
special filters. Solitons and similar solutions will separa
after some time due to the difference between correspon
group velocities; therefore, one may observe pure soliton
namics in lasers with small losses. For nonzeroc amplitudes,
the solitons generated increase asymptotically asAx; see Fig.
2, where amplification is included.

We now describe another mechanism of the laser p
generation in a quasistationary regime, which may occu
both relaxation and pumping are included. We believe t
some experimental results of Ref.@4# can be interpreted
within the framework of the mechanism described. We fin
stationary regime of laser pulse generation using the ab
.
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developed approach. Such a regime can be achieved in
ion, and dye laser systems with continuous pumping@4#.

Assume, as in the above case, that two rootsl2,4 move
from their initial values associated with plane waves to t
of the highest leading soliton. The parameters of the high
soliton are determined by the stationary point, i.e., the rig
hand side of Eq.~4.14! is equal to zero. Numerous invest
gations show that both rootsl2,4 monotonically tends~as the
functions of x) to their stationary valuesls ,ls* , respec-
tively, along curves symmetric to the real axis. These stati
ary values lie in the upper and the lower imaginary part
spectral plane; see Fig. 3. It was found numerically that
ymptotics l2→ls , l4→ls* ; do not depend on the initia
conditions. These pointsls ,ls* are the stable foci in a phas
plane. If one starts from any small-amplitude plane or pe
odic wave associated with spectral datal2,4, the solution
will transform into a form corresponding to value
l2(l4)5ls(ls* ). This transformation is associated wit
transformation of the modulus of elliptic functions from 0
1. This limit corresponds to formation of solitons from th
initial plane wave. The latter regime may occur for any in
tial plane or more complex periodic waves, contrary to t
first regime considered above. Such a plane or periodic w
with small amplitude can be used for modeling a noise i
tiating pulse generation in long lasers.

The transformation of the plane wave into a set of solito
during amplification in the second regime is shown in Fig.
Verification of the second mechanism of pulse generat
can be achieved experimentally by testing some physica
lations. For instance, the experimentally determined rela
between the amplitudes of the generated solitons and
values of the pumps could be used as a test. For ion l
pumping, constantC0 is determined by a current value use
for excitation of ions@4#. The relation between the amplitud
of the generated pulses andC0 can be found experimentally
Theoretically, the dependence of a peak intensity of solit
on C0 can easily be found from the relation determining t
stationary pointls . We believe that comparison of theore
ical results with experimental results found in@4# is satisfac-
tory.

FIG. 3. Dependence of a real and an imaginary part of the sp
tral parameterl2(x) on a space coordinatex found numerically.
Dependence ofl4 is the same up to a change of sign of the ima
nary part. Imaginary and real parts ofl2(x) tend to their stationary
values Iml2(x)→1, Rel2(x)→0, x→`.
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In this paper we described two solutions to the Whitha
equations and used them for analysis of the generation
soliton trains in some laser schemes. It was found that
second regime more adequately describes known experim
tal results obtained in studies of the laser systems descr
here. The above approach can be used to study other n
integrable models having applications in optics. For instan
four-wave-mixing models@17,18# with terms describing re-

FIG. 4. Transformation of a weak plane wave into a sequence
solitons in the second regime. Dependence on the field inten
I (x) is found numerically and shown in arbitrary units.
.
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P.

.

1

P

of
e
n-

ed
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e,

laxation and pumping can be studied without artificial r
strictions being imposed on the physical parameters.

The approach developed here can be used in sev
branches of nonlinear physics. For instance, one can s
small deformations of chiral fields without restrictions bei
imposed by an exact integrability condition. Lax represen
tion for the latter model is as follows:

DjF5
u

l21
F, DhF5

v
l11

F. ~4.25!

Hereu,v are the matrix functions andl is a spectral param
eter. This deformation can be used in some gravitat
theory @19#. A corresponding theory was developed by B
linsky and Zakharov@19# for soliton solutions. But direct
application of IST with variables depending spectral para
eter have not, to our knowledge, been performed for perio
waves.
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