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Deformed Whitham equations for some near-integrable systems
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A perturbation approach for some near-integrable systems with periodic boundary conditions is developed.
Deformed Whitham equations including perturbaton terms of a special type are derived in a common form for
Ablowitz-Kaup-Newell-Segur models. This approach is used for analysis of the generation of a dense packet of
solitons in a model of a two-level laser with pumping of the upper level and relaxation.
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[. INTRODUCTION integrable systems it leads to tremendous analytical prob-
lems. On the other hand, some experimental results of the
The description of soliton generation in nonlinear mediageneration of dense packets of pulses may be described using
is an interesting and important problem in theoretical physicsnodulated periodic waves. Furthermore, experimental and
[1-3]. The generation of ultrashort pulses in the amplifyingnumerical studies of soliton generation in lasers with small
systems has also attracted researchers’ attention. The dynafasses show that an initial stage of generation may be simu-
ics of laser pulses isolated from each other has been studid¢ated using oneftwo-) phase waves with modulated shapes
in many publications. Frequently, however, the initial stagg4]. It worth mentioning that similar situations arise in study-
of generation involves a high density of solitons or anotheling the evolution of steplike fields in attenuatd&l. This
type of nonlinear pulse. This situation may arise, for in-observation motivates one to use a heuristic Whitham ap-
stance, in a powerful laser with small los§d$ The behav- proach to study the behavior of dense packets of pulses. This
ior and characteristics of solitons depend on mutual interacapproach consists of two steps. The first step is a derivation
tion of solitons in a dense packet. Knowledge of suchof an exact oneftwo-) phase solution to the original equa-
characteristics is important in the application of generatedions with periodic boundary conditions. Then it is assumed
pulses in nonlinear optics and also for improving the effecthat spectral data associated with periodic wave can depend
tiveness of laser systems. To gain information on outpubn space and time variables. This dependence is slower than
pulse characteristics, one has to establish an onset of pulsttsat of a single oscillation consisting of a single packet. Av-
and regimes of generation. eraging over fast nonlinear oscillations yields evolution
The most detailed information about evolution of fields in equations for parameters of the periodic wave. These equa-
nonlinear models may be obtained by using the inverse scations are the hydrodynamic Whitham equati¢8s5], which
tering transform(IST) [5]. The dynamics of solitons in iso- can be effectively obtained using the 1$T2].
lation in the attenuators are now well understood mainly ow- Perturbation theory can be developed for systems with
ing to application of the IST to the solution of nonlinear periodic boundary conditions as well. It leads, usually, to a
models. The characteristics of generated pulses was studiedmbersome theory. In the present paper we develop effec-
in the framework of the IST by Manakov and co-workers for tive perturbation theory for slowly modulating dense packets
a long two-laser amplifief6]. As considered in the Ref6]  of pulses. A peculiarity of this theory is the possibility of
models, asymptotics of laser fields are described using mcorporating the perturbations by means of prolongation of
similar solution. Analogous asymptotics may be realized in alerivatives of a particular type. The ultimate goal of this
mathematically related model of stimulated Raman scatterpaper is the development of a perturbation approach and its
ing [7]. application to the description of slowly modulating periodic
More often than not, another scheme of amplification issolutions to the near-integrable system. This approach is
used in lasers; for details, s¢&4]. An idealized powerful based on the IST technique, which allows one to receive
laser with small losses may be simulated using the Maxwellmodified Whitham equations for slowly changing parameters
Bloch equations for a two-level system with pumping of anof periodic waves with terms describing perturbations di-
upper level. This and related models have been studied irectly in diagonal form.
many publications. However, a detailed description of the In Sec. Il an approach is developed for a common near-
dynamics of a dense packet of generated solitonlike ulintegrable Ablowitz-Kaup-Newell-SegufAKNS) system.
trashort pulses is, to our knowledge, absent in the literatureResults obtained by Burtsev, Mikhailov, and Zakhaf&y
To treat a nonlinear stage of evolution of the dense packfor exactly integrable models with changing spectral param-
ets of pulses, one must operate with a large number of deeters are used. Deformed Whitham equations are derived in
grees of freedom. Such treatment is possible, as a rule, ongec. Il by means of the extended method of Flaschka, For-
in completely integrable models, and even for the completelyest, and McLaughlif12]. Conventional Whitham equations
are modified to include perturbations terms.
The approach developed here is used for the study of
*Electronic address: zabolotskii@iae.nsk.su soliton train generation in a model two-level laser. This
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model may be used to describe an initial stage of ultrashonvhere D,=(dldn)+F(\,7,8)(dl3)), D= (d/9§)
pulse generation in gas, dye, and solid state laggrdt is  + G(\,7,£)(d/4,). The condition of compatibility(2.4) re-
known that some kind of pumping and relaxation can bequires that the following relation be held for the exactly in-
included in the IST without the IST losing integrability. Gen- tegrable models

eralization of models may be done if it is assumed that the

spectral parameter depends on varialled0]. A corre- F,TGR\=GtFG,. (2.9
sponding modification of the IST can be effectively used to ) ) S

study isolated pulse dynamics. It is known, however, thaft€lation(2.5 was derived by Burtsev, Mikhailov, and Za-
both relaxation effects and pumping can be included in th harov [9] for the exactly integrable models. Restrictions

above laser model without loss of applicability of the IST corrésponding to the, ¢ dependence oh is found in Ref.
only if artificial unphysical conditions are fulfilled; for de- [9]: We aim to construct the perturbation theory using an

tails, see[10]. These conditions are avoided and additional®Xt€nsion of the above results to near-integrable systems. We
perturbation terms can be treated in the approach present&@nsider perturbations that satisfy conditi@#) in the first
here. Section IV is devoted to studying the generation ofPProximation. Let us show that this condition can be ap-
dense packets of pulses. Exactly integrable two-level lasdiroximately fulfilled for some class of near integrable sys-
models with perturbations describing relaxation and pump!€ms. Consider the following form of functios and G:

ing effects are investigated. Two different solutions to modi-

fiegd Whitham equatio?ws are derived and investigated. These F=ef(eneéh), G=eg(enesn), 2.6

solutions demonstrate transformation of an initial constanfyheres is a small parameter. This means that both functions
field having small amplitude in a sequence of solitons. Thg g3nqdG are small and slow functions of variablesand &.

influence of pumping and relaxation on the characteristics Obependence of these functions on spectral parameteay
generated solitons is found and compared with experimentgg arbitrary. AdditionallyA may be a slow function of

data. and &. Direct substitution of Eq(2.6) into (2.5) shows that
condition (2.5) is fulfilled for arbitrary f and g if one ne-
Il. THEORY OF DEFORMED NEAR-INTEGRABLE glects the terms of order®. Thus, under this approximation
MODELS one can include in evolution equations terms describing per-

In this section, we extend the IST with variable spectralturk.)apons having ordee._Compatlbmty condition(2.4) is
satisfied up to terms having ordef.

parameters to near-integrable equations. Nonisospectral evo- i . L
X . . o e Instead of the above prolongation of partial derivatives,
lution equations arise as a compatibility condition of the fol- .
one can use a variable-dependent spectral parameter

lowing linear systems: which has to obey to the following pair of equations:

O,=UD —
¢ J d N=—F(\),
2.1) " ) 2.7
®,=Vo. dN=—G(\).
Here U, V, and ® are the matrixNXN complex-valued For slowly changing\=\ (& 5,e &) relations(2.5) are ful-
functions of¢, 5, and the spectral parameterin generalU  filled for any \,,,cr, by, if One neglects terms of order.
andV depend on\ rationally, Let the functiond= andG have the following forms:
N, Ny N
un(é,m) c b
U(NE,7)=Ug+ >, ”(_gn , F=—¢) ——, G=-¢> ——. (2.9
n=1 A—N\, m=1 A—Np m=1 A—Ap
(2.2
N, Then the general perturbed equations have the following
Un(fy”]) f .
VN E 7)) =vot D, , orm:
n=1 A= Mnp
(97]UO_(9§00+[U0,U0]:O.
where simple pole&, and ., do not coincide. In the con-
ventional IST,\, \,,, u, are assumed to be constants. Let auy, N N2 b Un+Covm
poles\,,u, be functions of¢, » and depend on hidden pa- %ﬁL u”’k21 No— fe :Sle ﬁ 2.9
rameter/. The compatibility condition “han Pk =t (A= #m)
Ny Ny
U,—V:+[U,V]=0 (2.3 Ion > Ue | cmvn+bnum‘
9¢ E1 =N AT (N )

must be fulfilled precisely ovef and the related system of
nonlinear equations for the matriceg,v,, possess exactly It is known that for the exact model, conditio(&8) impose
gauge indeterminacy. In exact theories this fact imposes reigorous restrictions on the trajectory ®»f[9]. The perturba-
strictions on\, which can be found in explicit form. Con- tion approach based on the above formulas allows one to
sider the following generalization of compatibility condition avoid such restrictions. At the same time, the form of pertur-
bations terms used above allows one to take advantage of the
D,U-D/+[U,V]=0, (2.4 IST.
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Applicability of the perturbation theory is restricted to where ¢, , and , , are the different solutions of system
special perturbation forms. These perturbations have to b€.1), (3.2). These functions satisfy the system
slow functions of variables; and ¢. Perturbation terms may . ]
include the effects of relaxation or loss for fields and material D, f=i(Ach—Az09), D f=i(Lh—L20),
equations, different forms of pumping, variation of media . .
parameters, and so on. These perturbations result in a slow D #9=2iA1f+2A10, Dg=2iL1,f+2L1,9, (3.4
change in parameter solutions. For instance, for the nonlinear . .
Schralinger equations, such perturbation terms may describe D h==2iAzf—2Auh, Dh=—2iLyf—2Ly0.
slow time and space modulation of medium density. Using; «5n pe easily checked
the example of the two-level laser model, it will be shown in P(\)=f2—gh
Sec. IV that these perturbations may be of actual physicaﬂ) P(\)=0
interest. K '

from syste(B8.4) that value
satisfies the conditions D.P(\)=0,

The shape of the periodic solution is determined by the
dependence dP on spectral parameter. For instance, the

IIl. DEFORMED WHITHAM EQUATIONS N-phase solution is determined by the following polynomial
In this section, the above perturbation approach will bedePendence:
used to construct the perturbation theory for the periodic 2N+2 2N+2
solu_tions to the evolu_tion systems_. Generalization or “defor- fz—gh= P(\)= H A=\ = E Pj)\j_ (3.5
mation” of the Whitham equations can be derived by k=1 j=0

straightforward application of the IST with prolonged deriva- . . .
tives. (The term “deformation” is borrowed from the paper Here,\ are the roots of polynomia?(\) fixed by the initial

of Burtsev, Mikhailov, and Zakharoy9]). The Whitham conditions. The meaning of the coefficiefitg depends on a
equations for AKNS systems can be directly derived in theParticular form of the Lax pair. It can be shown that qua-
framework of the IST in diagonal form. It will be shown dratic functions, satisfying the syste8.1), (3.2), have for
below that in the framework of the approach presented herdhe N-phase case the following forms:

the deformed Whitham equations have a diagonal form as N+l N+1 N+1
well. _ 2k k k
: f= fA, g=I(A NS h=p(A hi Ak,
Smoothed shock waves or any modulated wave train may kzo K 9=l )kzl 9 Pl )gl k
be described in a quasiclassi¢at hydrodynamit approxi- (3.6

mation. In this approximation, it is assumed that the length i

and duration of a train or region of oscillations is much moreWherel(\),p(\) are some functions of spectral parameter
than that of each soliton or nonlinear pulsation filling the determined by the Lax representatioth) [p(\)] is a com-
region of oscillations. It is suggested that the characteristi@0n multiplier ofL; andAy, (Lo; andA,y); 1(A) andp(r)
parameters of the periodic solution are slow functions of@re usually related by symmetry conditions. Following the
variables¢, . These parameters are the roots of polynomiaMarchenko approacf3,15 assume that

P (see below. Their scales of change are much greater than N+1
that of the §|ngle pulse. These slowly changlng paramgters g=I(\) H [A— (&7, (3.7
obey equations that may be found by averaging some inte- k=1

grals over the period of fast pulsatiofisin this way, analy- . ) o
sis of a complex system with many degrees of freedom igvhereuy are the auxiliary spectrum points. Substituting ex-

reduced to the solution of a few evolution equations. pression(3.7) in equations3.4) and settingh = u, we get a
We derive deformed Whitham equations using an extenset of equations fop,
sion of the approach of Flaschka, Forest, and McLaughlin ) P
[12] to the near-integrable models under consideration. As D ot = 2iL 1 i) VP (pe) 3.9
mentioned above, an exact method of solving the evolution ¢k | ’ '
equations under periodic boundary conditions is very effec- Tk =k ) (i)
tive for deriving the modulation Whitham equations. Let the
AKNS system have the following Lax representation:  2iAgA ) /P(Mk) 39
k™ . .
N Lin Lo —u)l
D§®=L¢>=(L L] (3.1) jl;[k(ﬂk i)l ()
21 11
AL A The approach consisting of derivation of a set of conserva-
D yd=Ad= 1 M2 o, 3.2 tion I_aws in the AKNS scheme is based on the following
Ay —App identity:
whereA and L are the functions of fields and spectral pa- D Lip -D A (3.10
rametenn. & is a matrix-valued function. Following the ap- g g g/ ’

proach developed in Reffl13], we introduce the quadratic o . _ o .
eigenfunctions which is a direct extension of the corresponding identity de-

rived in Refs.[12,15 to a case of prolonged derivatives.
f=(112) (1ot dothy), 9=Prib1, h=doihr, (3.3 Following Forest and McLaughlifil 5], we introduce a new
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normalizationf2— gh=1. Then the above identii3.10 can  transforming a plane wave having initially small amplitude

be rewritten in the following form: into a set of solitons. The parameters of these solitons tend to
be stationary values corresponding to a solitonic attractor.
L12(N) VP(N) A1 N)VP(N) We shall show that the onset of generated pulses may differ
7 N+1 =De¢ner - (317 from that of long-laser amplifiers considered [iB]. Com-
knl()\—,uk)l()\) kHl (A=)l (N) parison of qualitative theoretical results with known experi-

mental results seems to be satisfactory.
Averaging the above equations over the period of oscilla- Let us consider a two-level mo_del with pumping of an
tions yields the Whitham equations for slowly Ch‘,ngingupper level. Maxwell-Bloch equations describing resonant
spectral parametels, . Using relationg3.8),(3.9), averaging interaction of light pulses with atomic transition are as fol-
over fast variableg, » can be replaced by integration @ lows:
[12]. The angle brackets denote this averaging. The vanish- idy,
ing of singularities in the limits\—\,, where\, are the 3,Q+ y,Q+2ivQ=— TEN' 4.1
branch points ofyP(\), directly yields the Whitham equa-
tions in a diagonal form:

id
0:Na+ 71(Ng=No)= 52" (Q*E~QE*) +Co, (4.2

Nk Nk
%‘f’vka_g‘f'F()\k)‘f‘VkG()\k):O, (312
. 27wg
where 9,E=iNg 5 (Qr, 4.3
Vo 2iL 15( i) 2iA1 pi) o whered;, is the dipole momentum of transitiol is the
K ' difference between level population®, is an off-diagonal
l.l;Ik (b= ) (i) l.l;lk (b= ) () part of the density matrixiN, is the density of resonant at-

(3.13  Oms,y; are the relaxation constantsjs the retarded time,
wq IS the frequency of transitior, is the light velocity, and
Averaging may be done using equatias),(3.9). Integra-  y is the detuning frequency. Angle brackets denote averaging
tion on phas&V; =k;&+ wyn+wy, wherewy, k;, andw, are  of polarization for inhomogeneously broadened atoms:
constants, can be changed by integration on auxiliary vari<Q>F:f°ij(V)r(,,)dV over the detuning distribution
ablesu; . Equations(3.8),(3.9) have, on the left-hand sides, T'(1). We consider the case in which the time scale of am-
derivatives of\ = w,.. Here we aim to apply these equations pjitydes of fields is less thery; 3. For a large family of
to derivation of the Whitham equation in the first approxi- |asers, pumping may be modeled by including a real function

mation in degrees of, i.e., the terms of orde®(82) must Co(X). Heret=7/0 x=z\/§/c, Q=2mNgywody,/#, and
be neglected. This approximation is self-consistent if it isc/(y)_ ¢ _(x)/\q. ' ' '

assumed thath, are slow functions of variables | ot g apply the procedure described in the preceding
M= M(em,eé). The latter assumption means that the de-,

sections to a case of one-phase solution to Maxwell-Bloch

rivatives of; of variablesg, » have the same order as the gqjations. The Lax representation of the model has the well
perturbation terms associated with terfg\),G(\). Under  own form (3.1),(3.2), where

this assumption, the terms in Eqg3.8),(3.9) containing

small functions=(\),G(\) yield contributions of ordet to ) E E*

velocitiesV, and they have to be neglected in the first ap- Lu=—IN, Lp=5, La=—,

proximation in the final deformed Whitham equations.
i/ Nj i/ Q

IV. TWO-LEVEL LASER WITH CONTINUOUS PUMPING Ap=-A——) , Ap=—-— ) (4.4
4\ N—v r 4\ N—v r

Consider a physical application of the above general i/ o
theory. It is known that in long-laser amplifiers small initial A= — _< > ]
seed fields evolve into a set of pulses described by a similar- A\N—v/

ity solution [6]. Generally, the structure of the solution is

determined by the initial and boundary conditions, perturbaConsider the case &f(\)=e[c(ex)/N], G(\) =& y\. Here
tions, the form of pumping, and so on. It is important in laserc’ =€¢, 1= y,=¢y. Slow dependence of function on
constructions to know the change of pulse velocity withvariablex may be arbitrary. FunctioR(\) describes pump-
time, the dependence of the pulse shape on the parametersigg and functionG(\) is related to relaxation effects. We
the seed field, and so on. For lasers with external continuougstrict ourselves to the case of equal relaxation constants
pumping and small losses, a detailed investigation of they1= y.. This restriction can be fulfilled in a gas of metal
nature of the generated pulses with respect to evolutio@toms. It is known that each of these terms can be imple-
model may be performed using the above approach. In thigiented in the IST with variables depending on spectral pa-
section we will investigate two regimes of generation of therameter[10]. Relaxation and pumping terms can be unified
soliton trains. The first regime is a nonstationary transformaenly if very artificial conditions are imposed on functiofs

tion of long steplike pulses to a consequence of slowly amandc. These conditions are not fulfilled in real laser experi-
plifying asymptotic solitons. The second regime consists ofments. Using the approximate approach developed here, we
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can avoid these restrictions. We are able to investigate @he angle brackets in the above relation denote averaging on
region of parameters that cannot be reached by reduction dést oscillations over the periofl As noted above, averaging
the exact nonisospectral IST. Conditions of small pump anad¢an be done by changing of integration on phéé¢o inte-
relaxation terms can achieved in a modern experimentagration on the auxiliary variablg.. To accomplish this, re-
setup. As will be shown, there are regimes that influencevrite formulas(3.8),(3.9) in a common equation
both pumping and relaxation and lead to qualitatively new
behavior of generated pulses. Note that the above perturba- ou —'\/P_ €
tion approach can be used, in general, for any slow depen- IW WP(w)+ 2
dence of functiong(eX,et), y(eX,et).

We use for modeling of the initial stage of laser pu|seThe period of oscillationg is determined by the following
generation the simplest one-phase solution to the Maxwellintegral:
Bloch equation. The exact commadirphase solution to the

. (4.10

C
—tTyu
o

Maxwell-Bloch equations can be found in terms of _I_:J dW=f du 4.1
#-functions following[13] for c=y=0. The common solu- eC  eyu ' ’
tion has the following form: Z+ 5 T VP(=x)
. o O(Ws) Relation (4.11) can be easily obtained frortd.10. If we
_ Jikgx—i9,
E(x,t)=E(0,0) /" ox~ 70! W s)’ (49 neglect the perturbation termsc£y=0) we obtain

T=2K(K)[(A;—A3)(A,—N4)] Y2 whereK(k) is a com-
where W==(1/27) (kx+Q t+65) ki, Q. ,6° are con- plete elliptic integral of the first kind with moduluk:
: ) it oo ) K2=[(A1=No)(A3—A) V[(N1—N3)(Aa—X4)], A\ are the

stants, ands is a matrix of periods; see, for instandéd]. 17 A2JAA3 T g 17 A3/\A27 Aa)ly Ak
The structure of the solution is the same as for the nonlinedP0ts of polynomialP such that;>X,>X3>\4 [16]. Inte-

Schralinger equation§13,14 up to its dependenc®; on gration is performed along the curve whose circle cuts be-
the roots of polynomiaP. A one-phase solution to the non- tWeeNA; and\; or A5 and\,. Averaging over the period of

linear Schrdinger equation can be used for our purposeJ?‘St oscillationsT is performed by using the following rela-
after changing of the coefficief},. We shall use this exact tONS:

one-phase solution as a zero approximation. Perturbation 1 1 1

terms yield modulation of a train of the nonlinear pulsations. < > = _f de

This modulation is assumed to be of the same order as the AN—pf TJA—p

dispersion effects described in the hydrodynamic approxima- 1 1 d

tion by nonperturbed Whitham equations. = _J K )
For two pairs of complex conjugated roots of the polyno- T/ A—p £+ EYM Ny

mial P, Ny 3= a*i B\, 4= ap*iBy, we have from Eq(4.5 2u 2 (=)

the following expression for the intensity of the electric field: 4.12
[EDIP=[E(0.0L(B+ Bo)*~4BBos {L(B+Bo)* In perturbation theory, we neglect terms of ordef,

+(a— ag)2]YAW, k1], (4.6  therefore, terms in Eq(4.12 of order e can be avoided

because they give a correction of oréérin the final form of
where k is a modulus of the Jacobi function and the deformed Whitham equations. Thus the terms
k?=(4BBy)I[(B+ Bo)?+ (a—ap)?]. PhaseW is found (gc/u),eyu in the above relation have to be avoided.
from Egs.(3.9),(3.9). For the one-phase solution it can be  Setting successivel\n=\,,n=1—4, we obtain from

done easily: Egs.(4.11) and(4.12
1 = I'(v) - 1
W=2(t+xVy 1 +1t), Vo= —f ————dw. lim e =20, (InT). (4.13
— )\*))\n
4lT (ni—»)
=1 @7 The limits \ — X\, yield the singularities in the differentials
For the one-phase solution we have toNet2,[(\)=1 in DVP(V), Di/P(V).
formulas(3.4),(3.6). Then we have The vanishing of the corresponding coefficients4mb) are
fulfilled if the spectral parameters obey the following gener-
E = As alization of the Whitham equations:
D, D, , (4.8
29 g
0 c
whereD,=d,+Fd, ,D;=d,+Gd, . After a new normaliza- dIxhn— \/_n‘9t7‘n:"3 V_n)‘n+ o) (4.14
tion for functions f,g,h such thatf?>—hg=1, the above
equation transforms into the following: where
o [PV [POVT 1 1 r L1, (A 1 )—1 15
Xh—p| 1 Vo W= \N—v/]] (4.9 V, Vo M A— ’ '
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1 (A= A3)E(K)+ (N1 —Np)K(K) We assume that there are initial conditions leading to the

<)\1—M>: (hi—Na) (N1 —Na)K(K) ' generation of solitons at one of the edges of the steplike
pulse without amplification. The most interesting regime for

< 1 > (N —N2)K(K) = (A= Ng)E(K) application to laser optics is that a leading edge is associated
— = — — , with the highest soliton. For the Maxwell-Bloch model, such

N (A1=R2) (A= ha)K (k) a situation can be realized for some region of parameters of
1 (A= Ng)E(K) = (A o—N3)K(K) f[he initial steplike pulse if the system was initially partly

<)\3—M> = N3 (e AK(K) inverted. Another method consists in using a seed field hav-

ing the form of a periodic wave of a special type. Detailed
1 (A1—N3)E(K)— (A= Ny K(K) investigati_on of this problem is not the aim (_)f this paper. We
<)\ —,U«> = (i= ) (ha— N K (K) , only mention that such regime, the generation of higher soli-
4 1 naRfts R4 tons, has been observed in many studies. Under some condi-
whereV, is written in Eq.(4.7). For I'(v)=8(v) we have tions, the formation of solitons near the back edge may be of

Vo= 1/4\P,, where\Py= + (A1hoh 30 4) ¥2 The sign+ has potential experimental interest as well. Consider a situation
been chosen to make the phase velocity of the pulses ledd Which nonlinear pulses are generated near the back edge
then that of lightE(k) is a complete elliptic integral of the Of the steplike pulse and tend asymptotically to a set of soli-
second kind with the same modulus as the adowé&om the  tons. It is natural to suppose that the stage intermediate be-
above derivation, it is obvious that the modified WhithamtWween the plane-wave regime and the solitonic one can be
equations for different AKNS systems have the same viewfléscribed by a one-phase solution with slowly changing pa-
up to its dependence on a phase velodiy rameters. Such arguments may justify the application of the
Evolution equationg4.14) in partial derivatives posseses heuristic Whitham approach to describing the development
different kinds of solutions. Let us find a nonstationary soly-0f modulation instability in attenuators. This approach had
tion to the Whitham equation&t.14). Suppose thaty de- been very effectively used for investigation of the transfor-

pends only ort andc depends orx. Now perform the fol- Mation of steplike pulses into a set of solitons for the
lowing substitution: Korteveg—de Vries equatiofb]. For the model under con-

sideration, we have made numerous studies and found that
, under the above-mentioned conditions this approach yields
Ne=/07 dt\/§k(X,t)+2f c'(x)dx,  (4.169  satisfactory results.

The solution to the Whitham equatiorig.14) can be
where y'=gvy. The terms on the right-hand side of Eg. found only in an implicit form. Let two rootg; and {5 be
(4.14 containingy andc disappear and Eq$4.14 reduce fixed. Consider the most interesting case, in which
to nondeformed Whitham equations for hidden parametef,= ag+iBg,{3=ag—iBg,aq,Bo# 0. The dynamics of the
Zi(x,1). We shall use the substitutiqd.16) to analyze split-  two “moving” roots ¢, and{, will obey the hydrodynamics
ting of the initial seed field having the form of a steplike approximation to the Whitham equatiof#s14). The solution
pulse into a set of amplifying pulses. The Whitham equationgo Egs.(4.14 fixes the trajectories of roots in the complex
are divided into the two pairs of complex-conjugate equaplane. Analysis of these trajectories allows one to describe
tions. Two roots are initially fixed by linking with plane- the transformation of weak quasilinear modulation of the
wave asymptotics at-o or +; two others roots can be plane wave to a set of quasi-isolated solitons. Let
linked with parameters of the highest soliton of the packet of{,=a+i8,{4,= a—iB. The second Whitham E¢4.14 (for
pulses arising near the leading or back edge, respectively),) is the following:

L PO 2i Blag— a+i(Bo= B)IK(x) i
X Pl a+iBlag—a+i(Bo—B)IK(x)—[ag—a+i(Bo+B)IE(K)|” '
For the real and imaginary parts of E4.17) we have
_E(x) _alagt+a®+ Byt B —2a(aga+ BoB)
RO~ KRG~ a(ag+a?+Bi+ B2 —2ag(a?+ 7) (418
t
(;JP_O—l (a?+ ) (ag— ) [1-R(k)]+[Bo— B+ (Bo+ BIR(x)1*=4B(ap— a)(agB— aBy)[1-R(x)]
+[Bo— B+ (Bo+ BIR(K)(BBo— B2+ aag— a?). (4.19

Equations(4.18),(4.19 can be solved for and 8 as functions oR(«) and the modulus,
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48Bo
2: . .2
“ (ao—a)z-i—(ﬁo-i—ﬂ)z (420

Calculations yield

a= —Mz(agkz+ (2— K)B(Z)M + BO{Za(Z)Kz(Z— KM+M 2[4,8(2)(1— K)— ang] - a(Z)KZ}UZ), (4.21

BoaM From Eq.(4.19 it follows that in both limits the phase ve-
= (4.22  Jlocity of wavesV, coincide withV,, although they have, of
course, different values of these limits. Thus, the implicit
solution (4.21),(4.22 describes the moving of hidden spec-
whereM (k) =[(2— k) —2(1— k¥)R(k)]. tral parameters/,, from the values associated with the

Equationg(4.21), (4.22 show that trajectories of roots are plane-wave solution to those of the asymptotic soliton.
strictly determined. This is a consequence of the fact that the Thus, the change of parameters; describes in the soli-
system remains Hamiltonian in spite of the fact that spectralonic limit slowly increasing amplitude of generated solitons
data change with changes of variables. Note that spectréiirough relatior(4.16. The regime of laser pulse generation
data dependence described by the Whitham equations deonsists of two concurrent processes. The first is a formation
stroys the exact integrability. of solitons near the edge of a steplike pulse and the second is

Trajectories of the rootg,— ¢;, {,— {3 as functions of simultaneous amplification of these pulses. Consider the ini-
x/t consist of two symmetric monotonic curves with respecttial conditions associated with soliton formation taking place
to real axis. The curve lying in an upper half plane startsn attenuators as well. In Fig. 1, transformation of the back
from the real axis and monotonically tends to a “top” value €dge described by the above solution for hidden parameters
£, of the imaginary part of the spectrum. The case of coais shown. Amplification can cause a significant change in the
lescing roots¢,= ¢, corresponds to the plane-wave limit, form of train generatedsee Fig. 2, where splitting of step-
from which we started. The solitonic limit is achieved, thenlike pulses with amplification is shown. Note that the regime
k—1. It may be shown using Eq$4.21),(4.22 that root con_sidered is esseptially nonstationary and does not reach
{,— ¢, and {,— {3 with increasingt/x. Near the highest Stationary asymptotics.

soliton containing the back edge of the packet, neglecting the For application to laser systems, the regime of greatest
terms of order of (+ «), we obtain practical utility is that in which the most powerful solitons

are generated near the leading edge of the train. Numerics
show that the transformation of the steplike pulse into a train
21m¢y(1—k)Y? of solitons near the leading edge may occur in an attenuator
VA (423 for an initial seed field having special periodic modulation. It
was found that such a regime may also occur for some re-
gions of initial values of field amplitude, detuning, and initial
I (3;) nonzero polarizatio®(x,0), i.e., for partly inverted systems.
These regimes require special experimental efforts and there-

agk

{o=8q| 1+

I(x)

5 10 15 20 25 30
) | U

FIG. 1. Transformation of the back edge of an initially steplike

il

5 10 15 20 25 30

seed pulse in a sequence of solitons due to modulation instability T
without amplification and losses=y=0. Dependence on the in-
tensity | (x) =|E(x)|? of generated field is found by numerical so- FIG. 2. Transform of the back edge of a steplike pulse for

lution to the Whitham equations for hidden paramefgr and  c¢’=0.05;'=0.05. Dependence on the intensii{x) is shown in
shown in arbitrary units. arbitrary units.
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fore the region of application of the results is restricted.
However, the above-described transformation of the steplik
pulse in a train of soliton can be realized for the back edge o
pulse as well; see Fig. 2. o8}
The relative contribution of the above mechanism of soli-
ton generation in laser output requires additional investiga
tion. Indeed, the specific property of the Maxwell-Bloch
equations is that in a regime of amplification the contribution
of the continuous spectrum in an output field may be domi-
nant(cf. [10,7]). The usual experimental setup contains fil-
ters removing “parasite” spikes appearing after the main ...
pulse; sed4]. In such a system, solitons generated from a ReXs
steplike seed field can be observed experimentally if the
group velocity of the soliton packet differs significantly from 2 ‘ 6 0
that of pulses associated with a continuous spectrum an
losses are sufficiently small. To compare relative contribu-
tions of the solitonic and nonsolitonic parts in a laser output, FIG. 3. Dependence of a real and an imaginary part of the spec-
let us consider the simplest isolated soliton solution. Thigral parametei,(x) on a space coordinate found numerically.
one-soliton solution describing the edge of packet is deterDependence ok, is the same up to a change of sign of the imagi-
mined by the highest point of the imaginary part of the spechary part. Imaginary and real parts §(x) tend to their stationary
trum and is associated with the initial steplike pulse. Let thisvalues Im;(x)—1, Re\5(x) =0, x—=.

point be £y =ao+iBo; here,ag, By are real constants. The yeyeloped approach. Such a regime can be achieved in gas,
solution for the amplifying soliton in the above approxima- ion, and dye laser systems with continuous pumjiitig

tion can easily be found by several known methods using the Assume, as in the above case, that two roots move

Lax representation for the Maxwell-Bloch model. For in- from their initial values associated with plane waves to that
stance, the Darboux transform yields, for zero asymptotigf the highest leading soliton. The parameters of the highest
X— £, a solution for fieldE as a combination of functions soliton are determined by the stationary point, i.e., the right-

1}k

Imho

W=/, E=48,V,V,/|V,|2+|V,|? where  hand side of Eq(4.14) is equal to zero. Numerous investi-
¢=i[Ndx+if(dt/4\,)+Db, b is a constant. gations show that both rooks, , monotonically tendsas the
This solution is as follows: functions of x) to their stationary valuedag,\%, respec-
_ _ tively, along curves symmetric to the real axis. These station-
/12 Imétia ary values lie in the upper and the lower imaginary part of
E(X't):4'30(;osf(2 Rep+a,)’ spectral plane; see Fig. 3. It was found numerically that as-
(4.24 ymptotics \,—\s, A\y—\%; do not depend on the initial
7 _ =9t 7 _ conditions. These points,, A% are the stable foci in a phase
V2e'x+ (177" 2/ x+ 44— Vi, s : .
b= — ) plane. If one starts from any small-amplitude plane or peri-
Y 4c’ odic wave associated with spectral datg,, the solution

will transform into a form corresponding to values
For solution(4.24 we havex—cjt=c,— ¢t~ "*+o(t™ ). No(Ag) =Ng(\¥). This transformation is associated with
Herec, is the light velocity,a, , andc, , are the constants, transformation of the modulus of elliptic functions from 0 to
ci=(c/y")[1+(y'/4c)], co= i/ V8[1+y'/(4c)]. Itis 1. This limit corresponds to formation of solitons from the
known that a similar solution associated with the continuousnitial plane wave. The latter regime may occur for any ini-
spectrum for the above Maxwell-Bloch mod@tithout re-  tjal plane or more complex periodic waves, contrary to the
laxation possesses a leading front described approximateljirst regime considered above. Such a plane or periodic wave
by the Bessell functions and depending on a similar variablgyith small amplitude can be used for modeling a noise ini-
o=+/(cit—x)(2x) [11]. For a fixed pointoy on the leading tiating pulse generation in long lasers.
edge of a moving pulse, one finds that—cjt=-— The transformation of the plane wave into a set of solitons
oot 1+0o(t™1). Herec, is a constant. Thus, solitons near the during amplification in the second regime is shown in Fig. 4.
leading edge may be observed for powerful seed pulses angerification of the second mechanism of pulse generation
special filters. Solitons and similar solutions will separatecan be achieved experimentally by testing some physical re-
after some time due to the difference between correspondinigtions. For instance, the experimentally determined relation
group velocities; therefore, one may observe pure soliton dybetween the amplitudes of the generated solitons and the
namics in lasers with small losses. For nonzeamplitudes, values of the pumps could be used as a test. For ion laser
the solitons generated increase asymptotically>@see Fig.  pumping, constant, is determined by a current value used
2, where amplification is included. for excitation of iond4]. The relation between the amplitude

We now describe another mechanism of the laser pulsef the generated pulses a@g can be found experimentally.

generation in a quasistationary regime, which may occur ifTheoretically, the dependence of a peak intensity of solitons
both relaxation and pumping are included. We believe thabn C, can easily be found from the relation determining the
some experimental results of Rd#] can be interpreted stationary point\;. We believe that comparison of theoret-
within the framework of the mechanism described. We find dcal results with experimental results found[i] is satisfac-
stationary regime of laser pulse generation using the abovaery.
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laxation and pumping can be studied without artificial re-
I (z) strictions being imposed on the physical parameters.
if ﬂ The approach developed here can be used in several

branches of nonlinear physics. For instance, one can study
small deformations of chiral fields without restrictions being
imposed by an exact integrability condition. Lax representa-
tion for the latter model is as follows:

0.6 F

DP=—®, D,b=—>0. (4.25

0.4 ¢

eter. This deformation can be used in some gravitation
. . . / . theory[19]. A corresponding theory was developed by Be-
20 40 6 80 100 120 linsky and Zakharo\19] for soliton solutions. But direct

application of IST with variables depending spectral param-

. ) eter have not, to our knowledge, been performed for periodic
FIG. 4. Transformation of a weak plane wave into a sequence ofygyes.

solitons in the second regime. Dependence on the field intensity
1(x) is found numerically and shown in arbitrary units.

0| U Hereu,v are the matrix functions anx is a spectral param-
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